If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-3=17
We move all terms to the left:
x^2+8x-3-(17)=0
We add all the numbers together, and all the variables
x^2+8x-20=0
a = 1; b = 8; c = -20;
Δ = b2-4ac
Δ = 82-4·1·(-20)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12}{2*1}=\frac{-20}{2} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12}{2*1}=\frac{4}{2} =2 $
| 3(2x−5)=2(3 | | x–16=2(x–3)+4 | | 10z-4z=14+8z | | |−4x+1|+5=2 | | 10+5g=-10+3g | | x/8+13= | | 4x−3=2 | | 4x−3=2 | | 8=6/5a | | 2x/12-5=9 | | 3r-5=5r+7 | | 4(x-4)+40=-3x | | –17=7c+4 | | 2x+3=7* | | 0.7-5.92=0.32=0.33r+7.76 | | 10-n=-2n | | -3(2x-4)^2=27 | | 4(x+4)+40=3x | | 7+4(x-5)=15 | | x+3-4=6 | | 6y+24y+9=61 | | 14r-12=-9r+24 | | -7x^2+3x-3=0 | | -4(x+6)=-64 | | -3(2x-4)^{2}=27 | | 3x-(4+2x)=-(-3+4)+2 | | 4x-22=2(5x-2) | | 14+2x=3/2x+16 | | 25(27-18m)=199+26m | | -3x^2+11=11 | | 18x+6=42 | | h/4-12=-5 |